A New Triterpenoid Saponin from the Seeds of Vaccaria segetalis

Sheng Min SANG¹, Min Liang ZOU¹, Ai Na LAO¹*, Zhong Liang CHEN¹, Jun UZAWA², and Yasuo FUJIMOTO³

¹Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031
²The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan
³College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan

Abstract: A new triterpenoid saponin, named segetoside **k**, has been isolated from the seeds of *Vaccaria segetalis*. On the basis of chemical reaction and spectral analysis, the structure of segetoside K was established as: olean-12-ene-23 α , 28 β -dioic acid 3 β , 16 α -dihydroxy-28-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-gluco-pyranoside(1).

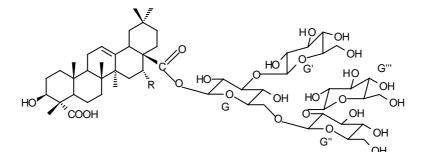
Keywords: Vaccaria segetalis, Triterpenoid saponin, Segetoside K.

The seeds of *Vaccaria segetalis* (Neck) Garcke, which is distributed all over China, except southern China, are used in Chinese folk medicine for promoting diuresis, activating blood circulation and relieving carbuncles ¹. Previous studies on the seeds of this plant have led to the isolation of seven cyclic peptides ²⁻⁵ and several saponins ⁶⁻¹⁰. We have reported the isolation and structural elucidation of Segetosides **A**, **C-E** from the seeds of *Vaccaria segetalis* ¹¹⁻¹³. Further investigation of the seeds led to the isolation of a new triterpenoid saponin, named Segetoside **K** (1).

The *n*-butanol fraction from the ethanolic extract of the seeds of *Vaccaria segetalis* was chromatographed on Diaion HP-20, silica gel (CH₂Cl₂-MeOH-H₂O 2.5:1:0.15) and RP-18 silica gel (70% MeOH) to afford segetoside **K**

Segetoside **K**, an amorphous solid, $[\alpha]_D^{24}$ –20.53 (c 0.28, MeOH), had a molecular formula of C₅₄H₈₆O₂₆ determined by ESIMS (at *m/z* 1174 [M+Na]⁺) as well as ¹³C and DEPT NMR data. Its spectral features and physicochemical properties suggested **1** to be a triterpenoid saponin. Its IR spectrum showed characteristic absorptions for hydroxyl (3400cm⁻¹), ester (1726cm⁻¹) and a glycosidic linkage (1000-1100cm⁻¹). The ¹HNMR spectrum showed the signals of six methyl groups at δ 1.01, 1.10, 1.12, 1.19, 1.69, 1.82 ppm, and one olefinic proton at δ 5.59ppm. The ¹³CNMR spectroscopic data revealed six methyl groups at δ 12.4, 16.4, 17.6, 24.0, 27.3, 33.3 ppm, a pair of olefinic carbon

aglycon moiety				sugar moiety			
position	1	2	3	position	1		2
1	39.4 t	39.0 t	39.2 t		$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$
2	28.0 t	27.7 t	26.2 t	G			
3	75.7 d	75.5 d	75.6 d	1	95.2 d	6.21 d, 7.7	94.8 d
4	54.6 s	54.3 s	54.4 s	2	73.3 d	4.29 m	73.1 d
5	52.2 d	51.8 d	52.0 d	3	88.2 d	4.32 m	87.9 d
6	21.9 t	21.6 t	21.8 t	4	69.4 d	4.35 m	69.1 d
7	33.4 t	32.9 t	33.3 t	5	77.0 d	4.18 m	76.8 d
8	40.6 s	40.2 s	40.4 s	6	69.1 t	4.35 m	68.8 t
9	47.7 d	48.3 d	42.6 d			4.56 m	
10	37.0 s	36.8 s	37.0 s	G'			
11	24.0 t	23.8 t	23.9 t	1	106.0 d	5.38 d, 7.9	105.6 d
12	122.8 d		123.0 d	2	75.8 d	4.13 m	75.5 d
13	144.5 s	144.0 s	145.3 s	3	78.3 d	4.22 m	78.0 d
14	42.2 s	42.0 s	42.2 s	4	71.4 d	4.23 m	71.2 d
15	36.2 t	28.2 t	36.2 t	5	78.6 d	3.99 m	78.3 d
16	74.2 d	23.1 d	74.7 d	6	62.6 t	4.52 m	62.4 t
17	49.2 s	46.9 s	49.0 s			4.61 m	
18	41.4 d	41.6 d	41.5 d	G''			
19	47.3 t	46.1 t	47.3 t	1	102.8 d	4.97 d, 7.7	102.5 d
20	30.9 s	30.6 s	31.0 s	2	83.8 d	4.11 m	83.5 d
21	36.0 t	33.8 t	36.2 t	3	78.1 d	4.33 m	77.9 d
22	32.2 t	32.2 t	32.7 t	4	71.0 d	4.23 m	70.8 d
23	180.8 s	180.8 s	180.6 s	5	78.5 d	3.85 m	78.2 d
24	12.4 q	12.3 q	12.3 q	6	62.3 t	4.45 m	62.1 t
25	16.4 q	16.0 q	16.2 q			4.49 m	
26	17.6 q	17.3 q	17.5 q	G'''			
27	27.3 q	26.0 q	27.3 q	1	106.0 d	5.37 d, 7.7	105.6 d
28	176.0 s	176.3 s	180.8 s	2	76.5 d	4.13 m	76.2 d
29	33.3 q	33.0 q	33.4 q	3	78.1 d	4.22 m	77.9 d
30	24.0 q	23.6 q	24.8 q	4	71.3 d	4.23 m	71.0 d
				5	78.7 d	3.99 m	78.4 d
				6	62.5 t	4.36 m	62.3 t
						4.40 m	


Table 1 ¹³CNMR data of compounds 1 $_{\rm N}$ 2, and 3, and ¹HNMR data of the sugar part of 1 (C₅D₅N, δ in ppm, J in Hz)

atoms at δ 122.8 and 144.5ppm, and two carbonyl carbons at δ 176.0 and 180.7 ppm. All these proved that the aglycon of **1** was an oleanic acid triterpene. Comparison of the signals from the aglycon moiety of **1** in the ¹³CNMR spectra with those from compound **3** (olean-12-ene-23 α , 28 β -dioic acid 3 β , 16 α -dihydroxy) ¹⁴ showed that the aglycon

A New Triterpenoid Saponin from the Seeds of Vaccaria segetalis

moiety of 1 was the same as 3 (Table 1). Acid hydrolysis of 1 produced sugar components identified as all D-glucose. The β anomeric configurations for the glucoses were judged from their large ${}^{3}J_{H1,H2}$ coupling constants (7-8Hz). Comparing the 13 CNMR signals of the sugar part of 1 with those of vaccaroside A (2) which has been isolated from this plant^{10,12} revealed that **1** has the same sugar part as those of **2**. Moreover, from the HMBC spectrum of compound 1, cross peaks were observed between $C_{28}(\delta 176.0)$ and $H_{G1}(\delta 6.21)$, $C_{G3}(\delta 88.2)$ and $H_{G'1}(\delta 5.38)$, $C_{G6}(\delta 69.1)$ and $H_{G''_1}(\delta 4.97)$, and $C_{G''_2}(\delta 83.8)$ and $H_{G''_1}(\delta 5.37)$. These results further confirmed that the sugar chain was located at C-28 of the sapogenin. Thus, segetoside K was olean-12-ene-23a, determined to be: 28β-dioic acid 3β, 16α -dihydroxy-28-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glu copyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside(1).

Figure 1 Segetoside K (1): R=OH, Vaccaroid A (2) : R=H

References

- 1. Jiangsu New Medical College, Zhong-yao-da-ci-dian, Shanghai Science and Technology Publisher, 1986, p, 311.
- H. Morita, Y.S. Yun, and H. Itokawa, Tetrahedron, 1995, 51(21), 5987. 2.
- H. Morita, Y.S. Yun, and H. Itokawa, Tetrahedron, 1995, 51(21), 6003. 3.
- H. Morita, Y.S. Yun, and H. Itokawa, Phytochemistry, 1996, 42(2), 439. 4.
- Y.S. Yun, H. Morita, and H. Itokawa, J. Nat. Prod., 1997, 60(3), 216. 5.
- V.I. Litvinenko, K. Amanmuradov, and N.K. Abubakirov, Khim. Prir. Soed. 1967, 3(2), 159. 6.
- 7. K. Amanmuradov, N.K. Abubakirov, Khim. Geol. Nauk., 1964, 6(1), 104.
- 8. H. Morita, Y.S. Yun, and H. Itokawa, Bioorg. Med. Chem. Letters, 1997, 7(8), 1095.
- 9. Y.S. Yun, K. Shimizu, H. Morita, and K. Takeya, Phytochemistry, 1998, 47(1), 143-144.
- 10. K. Koike, Z. H. Jia, and T. Nikaido, Phytochemistry, 1998, 47 (7), 1343.
- 11. S. M. Sang, A. N. Lao, H. C. Wang, Z. L. Chen, J. Uzawa, and Y. Fujimoto, Phytochemistry, 1998, 48 (3), 569.

Seng Min SANG et al.

- 12. S. M. Sang, A. N. Lao, H. C. Wang, Z. L. Chen, J. Uzawa, and Y. Fujimoto, J. Asian. Nat. Prod. Res., **1999**, 1 (3), 199.
- 13. S. M. Sang, A. N. Lao, H. C. Wang, Z. L. Chen, J. Uzawa, and Y. Fujimoto, *Nat. Prod. Sci.*, **1998**, *4* (4), 268.
- 14. H. Y. Li, K. Koike, J. Nat. Prod., 1993, 56 (6), 1065

Received 6 July 1999